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Session 2

Computer-
aided drug
design

V. Zoete
A. Daina

Lectures & Practices Agenda
[Session ______Jlectwe ______ [Practce

Prologue: molecular representation

Introduction to (computer-aided) drug design

Origin of 3D structures

Molecular recognition Use of UCSF chimera to analyze protein-ligand

complexes
Binding free energy estimation
2
Introduction to molecular docking Ligand-protein docking with AutoDock Vina
3] Introduction to molecular (virtual) screening Ligand-based virtual screening with SwissSimilarity
4 Short introduction on target prediction of small Use of SwissTargetPrediction to perform reverse
molecules screening.
5 Introduction to ADME, pharmacokinetics, Estimate physicochemical, pharmacokinetic, druglike
druglikeness and related properties with SwissADME
6 Short introduction to bioisosterism Use of SwissBioisostere to perform bioisosteric

design
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Binding free energy estimation
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Binding free energy — Link between in silico and experimental worlds

Link between experiment and modeling

t
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Binding free energy — The computational methods

Machine Learning approaches:
2D QSAR. Ex: Hansch equations
3D QSAR. Ex: CoMFA

Force field methods:

 Free energy simulation (FEP, TI)
+ MM-PBSA, MM-GBSA
Structure- « Linear interaction energy (LIE)

based  Empirical scoring functions (regression based
approaches). Ex: LUDI score

» Knowledge-based approaches (Potential of Mean
Force). Ex: PMF score

Binding free energy — The computational methods — Artificial intelligence?

Artificial Intelligence Artificial intelligence:

Theory and development of
computer systems able to perform
tasks normally requiring human

: : intelligence, such as visual

el e e perception, speech recognition,

else: decision-making...
go_ahead ()
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Binding free energy — The computational methods — Artificial intelligence?

Artificial Intelligence

Machine Learning

if (object_ahead) then:
turn ()

else: Statistical
go_ahead ()

Learning

QSAR

L UG UDiversits de Lausann:

Artificial intelligence:

Theory and development of
computer systems able to perform
tasks normally requiring human
intelligence, such as visual
perception, speech recognition,
decision-making...

Machine learning:

Branch of Artificial Intelligence
which focuses on the use of data
and algorithms to imitate the way
that humans learn, gradually
improving its accuracy

Binding free energy — The computational methods — Artificial intelligence?

Artificial Intelligence

if (object ahead)then:
turn ()

else:
go_ahead ()

Machine Learning

Deep
Learning

Output layer

Statistical
Learning

QSAR

Artificial intelligence:

Theory and development of
computer systems able to perform
tasks normally requiring human
intelligence, such as visual
perception, speech recognition,
decision-making...

Machine learning:

Branch of Artificial Intelligence
which focuses on the use of data
and algorithms to imitate the way
that humans learn, gradually
improving its accuracy

Deep learning:

Type of Machine Learning based
on artificial neural networks in
which multiple layers of
processing are used to extract
progressively higher-level
features from data




25/11/24

Binding free energy — Ligand-based - QSAR

Quantitative Structure-Activity Relationship :

1. Built a set of molecules with known experimental affinities (activities).

2. Define a mathematical relationship between the structure (properties) of
molecules and their activities.
3. Use this equation to predict the binding affinities (activity) of new molecules.
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Binding free energy — Ligand-based - QSAR

Quantitative Structure-Activity Relationship :

1. Built a set of molecules with known experimental affinities (activities).

2. Define a mathematical relationship between the structure (properties) of
molecules and their activities.

3. Use this equation to predict the binding affinities (activity) of new molecules.

Assumptions Q
Chemical similarity of ligands ==  Similarity of biological response R"\N)ﬁ(R1

Affinity is a function of the differences in the ligand properties. 0)\N R
The binding mode is similar. llis 2
Advantages

No need for structural information about the target
Once established, extremely quick calculation. Suitable for very large libraries.

Limitations
The set of molecules need to be large, with a broad spread of activity.
Limited to structurally similar molecules (applicability domain).

M"W&’ E 10
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Binding free energy — Ligand-based — 2D QSAR

n structurally related molecules
characterized experimentally

(i.e. the training set) Global or substituent “2D”
Descriptors (X):

R‘\N Rq .
Py \ - molecular weight
o N R -log P
Rs \ - polar surface area (PSA)
- simple count of atoms
| Quantitative description | | Measured activities | - electronegativity

\ ‘ - charges
-““-nm Rules for statistical relevance

1 and model quality:

- At least 5 molecules per descriptor
- Descriptors should not be intercorrelated

= (should not contain the same information)

MLR
By AG,,, =k, + E kX, Multiple Linear Regression, for instance.

C. Hansch and T. Fujita, JACS, 1964, 86, 1616 V/ E T

11

. . .
Binding free energy — Ligand-based — 2D QSAR
Ex: Probing the physicochemical and structural requirements for glycogen synthase kinase-3alpha
inhibition: 2D-QSAR for 3-anilino-4-phenylmaleimides.
Sivaprakasam, P.; Xie, A.; Doerksen, R. J.; Bioorg Med Chem 2006, 14, 8210-8218.
N
O: (, .
R\/::/ A
e )
\ Ly X
Compound R R; X ICsp' pICso° HAR forno Omewr w1 Jicmi Bomri  hems  Ebgnor  TmewRi
1 H H H 59 628 0 0 0 0 0 0 0 0 0
2 2-C1 H H 216 667 0 041 0 0 0 0 0 -097 0
3 2-OCH; H H 216 667 1 026 0 0 0 0 0 -055 0
4 3-NO, H H 141 685 1 0 071 0 0 0 0 0 0
5 4-C1 H H 514 629 0 0 0 0 0 0 0 0 0
6 4-OCH; H H 39 641 1 0 0 0 0 0 0 0 0
7 H 3-Cl H 301 652 0 0 0 1 0 0 0 0 0.71
8 2-C1 3-Cl H 195 671 0 041 0 1 0 0 0 -097 071
9 2-OCH; 3-Cl H 114 694 1 026 0 1 0 0 0 -055 071
10 2-NO,  3-Cl H 104 698 1 0.67 0 1 0 0 0 -1.01 071
Table 4. Statistical parameters of 2D-QSAR models for 3-anilino-4- 8
phenylmaleimides
QSARmodel n P F s 7
1 64 0815 0.665 230 0216 0.590
2 64 0860 0739 269 0.192 0675 =71
3 64 0862 0743 275 091 0.679 H
4 67 0847 0718 3L1 0231 0.671 3
5 67 0873 0762 320 0214 0706 3
6 67 0901 0812 365 0.91 0761 S 6
7 67 0902 0814 369 0.9 0762 g
8 67 0806 0.650 39.1 0253 0.608 %
9 67 0852 0726 410 0226  0.688
10 67 0862 0743 352 0220 0702
11 67 0863 0745 357 0219 0705 5 ) i g
12 67 0880 0774 418 0206 0.732 5 6 7 8
13 67 0909 0827 476 0.182 0788 Experimental activity
L2 % 032 080 56 0I5 O3H Figure 1. Correlation between the observed and predicted GSK-3u
14 67 0911 0829 486 0.81 0789 e it oS AR OGRSt a1
14a* 66 0922 0850 559 0165 0813 inhibitory activity from QSAR m showing compound 19 as
- - . - - outlier (triangle). M/ [+ 12

12
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Binding free energy — Ligand-based — 2D QSAR

Limited to structurally related molecules

Needs the experimental activity of a series ligands
= Not for ab initio studies

Overfitting
= - Method for selecting the descriptors (genetic algorithm)
- Estimation of the predictive ability
(external test set, Y-randomization, Cross-validation, ...)

13
Binding free energy — Ligand-based — 2D QSAR Adequate level of
complexity (just enough to
o0 70 o0 capture the essence of the
N y =-429.87x5 + 1309x° - 1507.1x* + 809.26x° - phenomenon)
50 . y=1.9581x+ 4.1718 “. . y=10.39812 - 12.357x + 5.8182 50 139.05x2+25,8353x+5.5846
R2=0.3036 o\ R*=0.9272 .

T

Under fitting " Appropriate fitting Over fitting -
oo 02 04 06 08 1 “00 02 0.4 06 08 1 oo 02 0.4 06 08 1 02
® “Experimental” data —— Models 0o ! o

Model (polynomial) degree (of complexity)

Also applies to classification:

Overfitting Right Fit Underfitting

M E 14
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Binding free energy — Ligand-based — 2D QSAR

Limited to structurally related molecules

Needs the experimental activity of a series ligands
= Not for ab initio studies

Overfitting
= - Method for selecting the descriptors (genetic algorithm)
- Estimation of the predictive ability
(external test set, Y-randomization, Cross-validation, ...)

. M"WZ/ E 15

15

Binding free energy — Ligand-based — 2D QSAR

Principle of Y-randomization

True plCso Randomized plCs
Molecule Mw logP tPSA
1 110 2.5 211
2 232 2.4 152
3 254 5.6 111
4 451 43 101
5 312 2.8 194
6 291 6.1 75
7 185 3.5 145
8 345 4.6 167
9 267 34 130
10 435 5.2 94
11 511 37 173
12 254 6.2 93
13 267 2.6 172
14 273 2.5 110
15 318 4.5 145
Search for models: plCsg = f(MW, logP, tPSA) Search for models: plCsp = f(MW, logP, tPSA)
Best model has Rye?=0.95 Best model has Rgnq?=0.01

Do plCs randomization thousands of times.
True model is trustable if Ry is always better than all Riang

eSO TEev OO M”‘*L’ ﬂ 16
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Binding free energy — Ligand-based — 2D QSAR

Limited to structurally related molecules

Needs the experimental activity of a series ligands
= Not for ab initio studies

Overfitting
= - Method for selecting the descriptors (genetic algorithm)
- Estimation of the predictive ability
(external test set, Y-randomization, Cross-validation, ...)

Validity domain. Interpretability strictly linked to the descriptor and training set:

If only hydrophobic groups at R+ in the training set
o

L> Influence of a hydrophilic group at Rq ? R

R4
1]
If only methyl, ethyl, propyl, butyl at R1 in the training set oZ >N R,
\

L> Contribution of pentyl, hexyl, etc... ? Ra

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
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Binding free energy — Ligand-based — 3D QSAR

Example : Comparative molecular field analysis (CoMFA)
R.D. Cramer et al., JACS, 1988, 110, 5959

Molecules superposed in a 3D grid
“3D” Descriptor = Molecular Fields
(x1,y1,21)  (x2y2,22)  (X1,¥1,21)  (X2,¥2,22)

‘(X\:Yiqzi)

LI / R4 LT
BEDERRRER s
1 .. e, ‘e, O ..

Steric field  Electrostatic field
(Lennard-Jones) (Coulomb)

MLR
[——— AGbmd = ko + E OC,-Si + E ﬁiEi Multiple Linear Regression, for instance.

TS OEOvv OO M E 18
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Binding free energy — Ligand-based — 3D QSAR

m=) “inverse” image of the receptor binding site

NP CoMFA electrostatic fields:
Phe209 - blue, negative-charge disfavored area
- red, negative-charge detrimental area

4  Phettt
N @8 CoMFA steric field:
f - green, bulk favorable area

Thr305 .
' - , bulk detrimental area
Asn297 *

A

Identification of inhibitors of the nicotine metabolising CYP2A6
enzyme: an in silico approach

M. Rahnasto, C. Wittekindt, R. O. Juvonen, M. Turpeinen, A.
Petsalo, O. Pelkonen, A. Poso, G. Stahl, H-D Hotje and H. Raunio
Nature, 2008, 8(5), 328-338

Aok 28 g

Ll [ARERRRRENET] IRERRRRREET] IRERENRRET] [RRRERRRENET] Ll IRRRRRRRRRTINTRRT!
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Binding free energy — Ligand-based — 3D QSAR

Requires the experimental activity of a series of ligands
Risks of overfitting

Needs to respect the domain of validity when used for prediction

Not limited to structurally related molecules

Main limitation: Alignment of the molecules in their (guessed) bioactive conformation.
Possible help of:

- Structure of a protein-ligand complex available

=> alignment over cocrystallized ligand or by docking.
- Set including rigid molecules

=> alignment over rigid molecules ”0*
- Functional groups in agreement with a ‘

pharmacophore hypothesis ) 47-55 A ;:j::N\

.. 32-62A

| N

=>» alignment over pharmacophoric points.

E\J 49-63A
Others : CoMSIA, HASL, Compass, APEX-3D, YAK, ... oo

TS EvTOTOvse OO M E 20
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d
(Elv—;v)bound

Binding free energy — Structure-based — Force field (Physics-based)

!
(Ele—ic)bnund

Example: Linear Interaction Energy (LIE)
= compute the van der Waals (Lennard-Jones) and electrostatic interaction (force field)
Ly

energies of the ligand with water (free state) and of the ligand with protein and water

(bound state).
2y

et
<~ \7‘//‘; S
} 2A 4
8wy 30 S AL
vdw Ny A0 K Wegz ™~
) TN R TR
free 4 A A
e 2 TN R AN
VY SRR A G A
VA f«uﬂkiﬁazﬁ:“"’
\ 9/‘“&{‘1/\-&

<El—s
1 <
(Ele—ic)free RIS 2
S8 «\/M,ﬁ;;,{
hed oo B _Q«J,lﬂ"
ol g
"7‘A f:’:_zj‘vjv _
Free state Bound state
environment = water environment = water + protein
Evdw> _< vdw> ) + (<Eelec> _< elec> )
=5 ['bound =5 [ free ﬁ =5 ['bound 1=5 [ free
T. Hansson et al., J. Comp.-Aided Molec. Design, 1998, 12, 27
2=0.181 and p=0.5, 0.43, 0.37, 0.33

AG,, =« (<

J. Aqvist, J. Phys. Chem., 1994, 98, 8253
2=0.165 and =0.5

W. Wang, Proteins, 1999, 34, 395

o function of binding site hydrophobicity

21
Binding free energy — Structure-based — Force field (Physics-based)

Modifications :

Example: Linear Interaction Energy (LIE)
- Additional term proportional to buried surface upon complexation
- Use of continuum solvent model instead of explicit solvent

D.K. Jones-Hertzog and W.L. Jorgensen, J. Med. Chem., 1997, 40, 1539

R. Zhou and W.L. Jorgensen et al., J. Phys. Chem., 2001, 105, 10388
- Replace molecular dynamics simulations by simple minimization

Huang, D.; Caflisch, A. J. Med. Chem. 2004, 47, 5791
Advantages :
- Can treat more structurally
different ligands than QSAR. But still
generally restricted to rather PMF, ...)
similar ligands.

Shortcomings:
- Slower than scores based on a
single conformation (LUDI,

- Not really universal
(o and B are system-dependent)

- Need experimental binding
affinities of known complexes

LU LN D

Lsil

!

“E 22
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Binding free energy — Structure-based — Empirical methods
Example: LUDI score

Evaluation of AGyping : @ simple count of various type of
interactions between ligand and protein.

+AG +AG_, +AG

olar solv flexi

sy | AGyq =AG, +AG,

apolar

Developed using a 82 protein-ligand complexes dataset

Polar interactions
AG,,, = AGth F(ARAG)x f(N ) % fpes
hb

+AG,, O\ F(AR Aa) x f(N, ) x fpes

+AG,,, N

estep’ " esrep
AGpp = -0.81, AGjon = -1.41 and AGegrep = +0.10 kcal/mol

Apolar interactions
AGapolar = AG]ipoAlipo + AGamE fR)

AGjpo = -0.81 and AG,,, = -0.62 kcal/mol

H.J. Bohm, J. Comput.-Aided Mol. Des., 1994, 8, 623

H.J. Bohm, J. Comput.-Aided Mol. Des., 1998, 12,309 |\ | \\ /11 ii i e e

with known experimental AGping

Desolvation effect

Active site filed with ~ MD
water molecules

Unbound water
molecules
AG

AG E unbound water

solv = lipo wat

AGiipo water = -0.33 kcal/mol

Ligand flexibility
AG,,, =AG, N

flex rot™  rot

AGo = +0.26 kcal/mol  N,o : number of
rotable bonds

23

Example: LUDI score

-log k; (predicted)
© S
o
°
o
°

m
os
o

R

w

>

9
-og ki (experimental)

Advantages :
- Allows identification of high affinity ligands
- Rapid estimation of the affinities
- Structurally diverse ligands

- Different proteins
=>» can be used routinely for
dockingl/virtual screening

Others : ChemScore, VALIDATE

LU NI Université de Lgus)

Binding free energy — Structure-based — Empirical methods

82 complexes of the training set
SD ~2 kcal/mol

Shortcomings:

- Somewhat large errors
- Method biased by training:
e certain type of proteins
e only good complementarity
protein/ligand
- Some interactions ignored:
+ cation—n
* [...0, halogens

24

12



25/11/24

PMF (kcal/mol)

Binding free energy — Structure-based — Knowledge-based

Example: PMF score

Statistical observations of intermolecular close contacts in large 3D databases (e.g. the Protein Data Bank, PDB).
The more frequent a protein-ligand contact between given atom types the more favorable to binding affinity.

Trained on 697 PDB complexes.

=> derivation of potential energy (“potential of mean force”, PMF), no need to train on AGping

16 protein atom types, 34 ligand atom types

Protein

N v

3.0 T T 3.0
20 F N 20k NC positively charged nitrogen
10 F L 10 b OC negatively charged oxygen
00 + L 00 } ND nitrogen as hydrogen bond donor
10 F | 4 g0k OA oxygen as hydrogen bond acceptor r‘
20 L ) _ ! ' 20 . ' OD oxygen as hydrogen bond donnor V ,/
0.0 5.0 10.0 0.0 5.0 10.0 0.0 5.0 10.0 / (

Atom pair distance (A)

Atom pair distance (A)

Atom pair distance (A)

|. Muegge et al., J. Med. Chem., 1999, 42, 791
|. Muegge et al., Persp. In Drug Disc. And Des., 2000‘, 20,99

PMF between ligand atom (i)

PMF score = E EA,,-(?)
7 [~ and atom protein (j)

ij ki of type ij
r<rcum/f

no unit, a
« real » score

UL Univercils de Lo

25

Binding free energy — Structure-based — Knowledge-based
Example: PMF score

‘ . .
e « %+ | 77 complexes, 5 different proteins
Yoa
o * . | SD~2kcallmol
3 'ol.: *
u_"’ -1250 T "
RN
E v v. A
o -175.0 ix e ¢'
. A Ve .

50150180110 -90 7.0 50 80 -10
log K (experimental)

Advantages : Drawbacks :

- Allows identification of high affinity ligands - Somewhat large errors

- Rapid estimation of the affinities - No measure of directionality of H-bonds

- Structurally different ligands - Does not estimate directly binding in

- “Universal” (different ligand and protein types) keal/mol
- No fitting parameters to measured AGong - Still a bias if a rare interaction is not
observed.

Others : DrugScore, GoldScore (trained on CSD)

TS OEOvv OO M E 26
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Binding free energy — Conclusion

- Large variety of methods to estimate binding free energies

- None really satisfying in terms of predictive ability versus speed

=9 Consensus scoring: evaluation of AGy,q With different
scoring function, select virtual ligands that are predicted
to be of high affinity by several scores.

S.S. So and M. Karplus, J. Comput. Aided. Mol. Des., 2001, 15, 613

- But, can be efficient to rank similar putative ligands

- Still a “limiting problem” of molecular docking methods
and more generally for computational drug design

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
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Small molecule docking

LU LN D

Lsite g

Lausann

Ezs

28
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Docking — Objective

Docking small molecules into protein cavities:

Predict the binding mode (location, orientation and the geometry) of the small molecule in the protein
= “How the small molecule is recognized by its macromolecular target’.

BN 9

\5“?@

"‘ !

1~ ﬂ,
Indoleamine 2,3-Dioxygenase

*d
*
¥

of complex

Courtesy of Dr. Ute Réhrig

LI LI LI IRRRRRRRRNET] L IRRRRRRRRRRRRI LU UNIL) Universite de Lausann:

an

30
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Docking — Definitions

Pose: location, orientation and conformation of a small molecule on a macromolecule surface (cavity, pocket of
groove) ~ tentative binding modes.

Native binding mode: experimentally defined binding mode (X-ray, NMR). Expected to be the best binding mode in

term of binding free energy.

Docking: predicting the (native) binding mode using molecular modeling approaches.

Re-docking : docking on the X-ray structure of the receptor obtained in complex with the studied ligand (i.e. perfect induced
fit). Used for exercise or benchmark.

Cross-docking : docking on a X-ray structure of the receptor obtained without the studied ligand (apo protein = no

induced fit, or complex with another ligand = different induced fit)

Success: ability to predict a binding mode close to the native binding mode (when known, i.e. exercise or benchmark of
the approach). Generally, RMSD < 2 A.

31

Docking — The root mean square deviation (RMSD)

Root Mean Square Deviation (RMSD, in A [10°m]) :

* is the average distance between the pair of atoms (normally heavy atoms).
* is the measurement of superimposition of two poses of the same molecule.
e the greater the less superimposed. RMSD = 0 means perfect overlay.

N : the number of atoms.
dii: the distance between atom i in the first pose and the same
atom i in the second pose [A]

o ° >4 <0
¥X B By B
X-ray Structure RMSD =0.2 A RMSD=1.1 A RMSD =4.5A

M E 32
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Docking — The root mean square deviation (RMSD)

Root Mean Square Deviation (RMSD, in A [10°m]) :

e is the average distance between the pair of atoms (normally heavy atoms).
e is the measurement of superimposition of two poses of the same molecule.
* the greater the less superimposed. RMSD = 0 means perfect overlay.

N : the number of pairs of atoms.

i : atom of pose 1

j : atom of pose 2

dj: distance between atom i and atom j [A]

Measure of success (redocking):

* Measure all distances between heavy atom pairs of the
crystallographic pose (C in grey ball & stick) and the
docking pose (C in pink stick).

e Calculate RMSD. .

e Rule-of-thumb: if RMSD < 2A: SUCCESS!

+  Here: M2A

Clustering (help at selecting the numerous poses)

e Each pose is compared to all poses by computing RMSDs

»  Poses are classified into clusters (e.g. 2A).
«  All members of a given cluster have not more than 24 RMSD to

any member of the same cluster.
e Acluster represents all poses with similar binding mode.

33

Docking — General approach

The “standard” methodology:

1. Generate a large number of poses. Sampling the posing space
(orientational/translational/conformational) of the ligand into the
protein binding site

2. Assess the binding strength. Scoring each possible ligand pose
(~ fast evaluation of the ligand affinity)

3. Selecting the pose with the most favorable binding (best score)
= predicted binding mode

Different levels of approximation:
- protein and ligand are rigid (the past!)

- the protein is rigid, the ligand is flexible (today, except HTVS)
- protein and ligand are flexible (possible today at computational cost)

34
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Ligand flexibility

Docking — Handling ligand and protein flexibility

» Pre-generated conformational libraries.

Generation of several conformers, and rigid
docking of each conformer

» Conformational search “on the fly” by the

posing algorithm.

Protein flexibility

» Selection of several different protein

atom size).

conformations (from experimental structures,
or MD simulations) and parallel dockings
(ensemble docking).

* Use of an “averaged protein structure”:
Incorporating multiple receptor structures into a
grid (energy-weighted grid, evt with reduced

» Conformational search “on the fly”. Selected

side chains can take preferential known

conformations (rotamer libraries).

AEENRRRNRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRNRRRRRRRRRRRRRNRRRNRNRRRNRRRREL HHHHHHHumUu

N s

35

Many programs exist. They differ in:
- the posing algorithm

- the handling of ligand and protein flexibility
- the scoring function

Docking — Existing programs

Posmg algorithm Scoring function Protein flexibility

Autodock
UCSF Dock

Autodock Vina
(swissdock.ch)

FlexX

Gold

Glide
EADock 2

EADock DSS
(old.swissdock.ch)

Attracting Cavities
(swissdock.ch)

Incremental build

MC + local search

Incremental build

EA

Exhaustive search
EA

Incremental build

Energy minimizations

Force field

Force field / contact score

Empirical + knowledge-based

Empirical score

Empirical / Knowledge-based

Empirical score

Force field

Force field

Force field

Flexible side chains

Protein side chain and
backbone flexibility

Flexible side chains

Ensemble of protein structures
Selected side chain / ensemble
docking

Protein side chain and
backbone flexibility

Protein side chain and
backbone flexibility

Protein side chain and
backbone flexibility

M E 36
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Docking — Posing algorithms

Three types of sampling algorithms:

Systematic * Combinatorial exploration of degrees of
freedom

search e Incremental construction

Stochastic e Monte Carlo (MC)
e Evolutionary algorithm (EA)

Sea rCh e Particle swarm optimization

Deterministic BV e
search * Molecular dynamics simulation (MD)

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

37

Docking — Posing algorithms — Systematic search

- Anchor and grow (Ex: EADock DSS [Swissdock.ch], FlexX, DOCK)
A. The ligand is divided into rigid (core fragments) and flexible parts (side chains)

B. An anchor is selected among the rigid fragments and docked into the target

C. The ligand is rebuilt incrementally, starting from the anchor, through systematic dihedral angle
exploration. Unfavorable dihedral angles are removed (pruning algorithm)

A Tdenify rotatable bonds

8 N
Sy |

B. Divide into overlapping rigid segments. Identiy anchar(s).

1 e
)\\\(\//Q/ JCAMD, 2001, 15, 411-428
L\M/ 0

Methods differ in the docking of the anchor and in the pruning algorithm

- Fragment growing (Ex: Hammerhead)
1. The ligand is divided into rigid (core fragments) and flexible parts (side chains)
2. Allrigid fragments are docked
3. Theligand is rebuild from fragments that have acceptable initial scores

‘ More “reconstruction algorithms” than “systematic search”

38
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The monte Carlo algorithm:

score it

Docking — Posing algorithms — Stochastic search

1. Generate an initial pose (ligand random conformation, translation and rotation) and

2. Generate a new pose from the previous one (through random
conformational change, translation, rotation) and score it

3. Use metropolis criterion(*) to determine whether the new pose is retained

4. Repeat steps 2-3 until the number of desired poses is obtained (typically >100,000)

(*) Metropolis criterion:

If the difference in energy between the new and previous pose (AE) is negative
(i.e. the new pose has better interactions with the protein), then the new pose is
accepted.

If AE is positive, a random number between 0 and 1, 0<X<1, is generated and
the new pose is accepted only if exp(-AE/RT)>X.

LN
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Genetic or evolutionary algorithms:

Ex: Gold, Autodock, EADock 2

Each selected Degree Of Freedom (DOF)
face an evolutionary process (The values
of all DOFs is called a chromosome)

!

[Agel 723 456 7]8]
[Value] -92]-12q-139 -50] 133]-129-119-144
Agel 1 [2]3]4[5[6[7]8
Value| 82 46 | -40] -38] -46] -56|-134 21

Anglef 1 | 2|1 3]4]|5[6]| 7|8
Value[-103 40 [-139 6 | 106]-100 30| 154]

The population is composed of a
large number of chromosomes

Seeding

Docking — Posing algorithms — Stochastic search

Evolutionary cycle

Ange] 1|2 [3[4]5]6]7]8
Value[-139-140 172] 128 -23[ 137] 175[-17

Optimized
conformation

(end of evolutionary
cycle)

Select conformation with
best Score(lowest E)

Change DOF
(Random
Mutations,
recombinations

Replace worst
conformations

DOF: global translation, global rotation, angles, dihedrals

M"“L’E 40
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Docking — Posing algorithms — Deterministic search

Minimizations and Molecular Dynamics (MD) simulations cannot cross easily energy batrriers.

=) Generally restricted to local search around the starting pose

May be useful to after systematic or stochastic process to refine poses
More useful in post-processing, computationally demanding!

\

MD simulation of a
p @/ BRAF/inhibitor complex.

M"WZ—’ ﬁ 41
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Docking — Scoring

The two roles of scoring functions:
1. Rank poses for one ligand in a given target (docking =» predict binding mode)
2. Rank the binding modes of different ligands for a given target =~ (compounds
selection in lead optimization or virtual screening in hit-finding in large databases).
=>» must be a quick estimate of the binding.
» Force-field (physics-based) functions:
+ the most descriptive and comprehensive, potentially the most accurate,
» slower,
» Simplified Force field: minimal description of interactions
= sum of vdW and electrostatic interaction energies for each atoms
(e.g. AutoDock function).
+ Exception: EADock DSS/Attracting Cavities, affinity evaluated by
computation of AGpjng
= CHARMM force field, MMFF force field and FACTS solvation model.
« Empirical functions, most common for docking
» excellent balance fastness/predictive power
+ only hard-coded interactions are accounted for
e.g. ChemScore, LUDI

* Knowledge-based scoring functions
» good speed/accuracy balance
+ a “real” score: without unit nor true physical meaning.
e.g. DrugScore, GoldScore, PMF-Score

M"“L’ E 42
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Docking — Beyond Physics-Based Docking: Deep Learning

100% Astex Diverse set PoseBusters Benchmark set
RMSD < 2A N RMSD <2A
RMSD < 2A &PB-Valid M RMSD < 2A & PB-Valid
Method  Authors Date Search space o 80%
S 72%
DeepDocké Méndez-Lucio et al. Dec 2021 Pocket B 7%
T 0w alg) 5% 8% ©°% 9%
Diffbock?  Corso et al. Feb 2023 Blind ey = W
g;n 45%
EquiBind® stirk et al. Feb 2022 Blind 2 0% 3%
]
]
TankBind? |y etal. Oct 2022 Blind g -~ 2%
20% N 16%
Uni-Mol®  Zhou ef al. Feb 2023 Pocket § \\ S %
‘ . 1% 2 i\ﬁ 1.29% 2.0% 8
0% : L = — ‘ Nn 5%
Gold Vina DeepDock Uni-Mol DiffDock EquiBind TankBind

classical DL-based DL-based blind

» PoseBusters: plausibility checks for generated molecule poses

» Co-folding: predict protein and ligand structure simultaneously
(Umol, AlphaFold 3)

M. Buttenschoen, G. M. Morris, C. Deane, PoseBusters: Al-based docking methods fail to generate physically valid poses or generalise to novel sequences,
Chem. Sci. 15, 3130 (2024)
Abramson, J., Adler, J., Dunger, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024)
Bryant, P., Kelkar, A., Guljas, A. et al. Structure prediction of protein-ligand complexes from sequence information with Umol. Nat Commun 15, 4536 (2024)
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Docking — Beyond Physics-Based Docking: Deep Learning
Current Shortcomings of AlphaFold 3

No Mutation Binding Site Removal Binding Site Packing Binding Site Inversion

O N VoY
\, \"{‘2@ T %O‘é; Thah
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s)‘\
-

ATP-binding
protein FtsE

RMSD = 2.0A RMSD = 1.6A RMSD = 2.3A
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@
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o
&
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RMSD = 0.7A RMSD = 0.7A RMSD = 0.9A
] \
g - O
b Vel
2 y)
= <
RMSD = 0.9A RMSD = 1.0A RMSD = 1.6A RMSD = 1.7A

T n
M.R. Masters, A.H. Mahmoud, M.A. Lill, Do Deep Learning Models for Co-Folding Learn the Physics of Protein-Ligand Interactions? BioRXiv (2024) E 44
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Docking — Success

Success: ability to predict a binding mode close to the native binding mode
(redocking, i.e. exercise or test of the approach). Generally, RMSD < 2 A.

Success rate : ~ 50 to 90 % in benchmarks (re-docking)

in “real” application (cross docking) the success rate decreases by at least 30%
= room for improvement.

=>» need for high precision docking programs, handling protein flexibility

(but also water, ion, ...).
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Binding free energy estimation and molecular docking

Contacts: vincent.zoete@unil.ch , antoine.daina@sib.swiss
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