

Lectures & Practices Agenda

Session	Lecture	Practice		
1	Prologue: molecular representation			
	Introduction to (computer-aided) drug design			
	Origin of 3D structures			
	Molecular recognition	Use of UCSF chimera to analyze protein-ligand complexes		
2	Binding free energy estimation			
	Introduction to molecular docking	Ligand-protein docking with AutoDock Vina		
3	Introduction to molecular (virtual) screening	Ligand-based virtual screening with SwissSimilarity		
4	Short introduction on target prediction of small molecules	Use of SwissTargetPrediction to perform reverse screening.		
5	Introduction to ADME, pharmacokinetics, druglikeness	Estimate physicochemical, pharmacokinetic, druglike and related properties with SwissADME		
6	Short introduction to bioisosterism	Use of SwissBioisostere to perform bioisosteric design		

Binding free energy – Ligand-based – 3D QSAR Requires the experimental activity of a series of ligands Risks of overfitting Needs to respect the domain of validity when used for prediction Not limited to structurally related molecules Main limitation: Alignment of the molecules in their (guessed) bioactive conformation. Possible help of: - Structure of a protein-ligand complex available → alignment over cocrystallized ligand or by docking. - Set including rigid molecules → alignment over rigid molecules 3.2 - 6.2 Å - Functional groups in agreement with a pharmacophore hypothesis 7 - 5.8 Å → alignment over pharmacophoric points. 4.9 - 6.3 Å Others : CoMSIA, HASL, Compass, APEX-3D, YAK, ... Unil 20 20

Unil

31

Docking – Definitions

Pose: location, orientation and conformation of a small molecule on a macromolecule surface (cavity, pocket of groove) ~ tentative binding modes.

Native binding mode: experimentally defined binding mode (X-ray, NMR). Expected to be the best binding mode in term of binding free energy.

Docking: predicting the (native) binding mode using molecular modeling approaches.

Re-docking : docking on the X-ray structure of the receptor obtained in complex with the studied ligand (i.e. perfect induced fit). Used for exercise or benchmark.

Cross-docking : docking on a X-ray structure of the receptor obtained without the studied ligand (*apo* protein → no induced fit, or complex with another ligand → different induced fit)

Success: ability to predict a binding mode close to the native binding mode (when known, *i.e.* exercise or benchmark of the approach). Generally, RMSD < 2 Å.

Docking – Existing	programs
---------------------------	----------

Many programs exist. They differ in:

- the posing algorithm
- the handling of ligand and protein flexibility
- the **scoring** function

Program	Posing algorithm	Scoring function	Protein flexibility
Autodock	EA	Force field	Flexible side chains
UCSF Dock	Incremental build	Force field / contact score	Protein side chain and backbone flexibility
Autodock Vina (swissdock.ch)	MC + local search	Empirical + knowledge-based	Flexible side chains
FlexX	Incremental build	Empirical score	Ensemble of protein structures
Gold	EA	Empirical / Knowledge-based	Selected side chain / ensemble docking
Glide	Exhaustive search	Empirical score	-
EADock 2	EA	Force field	Protein side chain and backbone flexibility
EADock DSS (old.swissdock.ch)	Incremental build	Force field	Protein side chain and backbone flexibility
Attracting Cavities (swissdock.ch)	Energy minimizations	Force field	Protein side chain and backbone flexibility

