

# Lectures & Practices Agenda

| Session | Lecture                                                    | Practice                                                                                         |  |  |
|---------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| 1       | Prologue: molecular representation                         |                                                                                                  |  |  |
|         | Introduction to (computer-aided) drug design               |                                                                                                  |  |  |
|         | Origin of 3D structures                                    |                                                                                                  |  |  |
|         | Molecular recognition                                      | Use of UCSF chimera to analyze protein-ligand complexes                                          |  |  |
| 2       | Binding free energy estimation                             |                                                                                                  |  |  |
|         | Introduction to molecular docking                          | Ligand-protein docking with AutoDock Vina                                                        |  |  |
| 3       | Introduction to molecular (virtual) screening              | Ligand-based virtual screening with SwissSimilarity                                              |  |  |
| 4       | Short introduction on target prediction of small molecules | Use of <b>SwissTargetPrediction</b> to perform reverse screening.                                |  |  |
| 5       | Introduction to ADME, pharmacokinetics, druglikeness       | Estimate physicochemical, pharmacokinetic, druglike and related properties with <b>SwissADME</b> |  |  |
| 6       | Short introduction to bioisosterism                        | Use of <b>SwissBioisostere</b> to perform bioisosteric design                                    |  |  |









| Vendor        | Num. of compounds<br>(Sep. 2018) | For more, see http://zinc.docking.org                |
|---------------|----------------------------------|------------------------------------------------------|
| Asinex        | 533,412                          | Cost:<br>• ~ 1 to 15 \$ per molecule when            |
| Chembridge    | 1,508,897                        | buying entire large collection                       |
| ChemDiv       | 1,487,287                        | <ul> <li>~ 100 \$ per molecule for cherry</li> </ul> |
| Enamine       | 2,152,818                        | among different collections                          |
| LifeChemicals | 379,184                          |                                                      |
| Otava         | 258,919                          |                                                      |
| Princeton     | 1,179,874                        |                                                      |
| SPECS         | 212,184                          |                                                      |
| TimTec        | 1,021,001                        |                                                      |
| Vitas         | 1,406,461                        |                                                      |









# Experimental Screening – HTS – Hit-to-Lead

Follow up:

- 1. Re-test the actives in the primary assay to confirm they are hits
- 2. Check whether the activity could be due to some **reactivity** (e.g. redox, alkylation,...) or some **physicochemical behavior** (absorbance, aggregation,...)
- 3. Perform a dose **response-curve** and determine  $IC_{50}$
- 4. Check the identity/purity of the compound in the well (NMR, Mass spec.)
- 5. Cluster actives and see if (i) multiple members of the family are actives (ideal), (ii) only one member is active (problem?) or (iii) if all members are active (problem?)
- 6. Possibly synthesize (or buy) and test some molecules similar to the actives
- 7. Perform a **secondary assay** (different experimental conditions to verify that the activity is not assay-dependent)
- 8. Select, among the true, confirmed actives those that are the most **synthetically accessible**, with the best **ADME-tox profile**, etc...



Unil

SIR



































































# Molecular Screening – Molecule Filtering Filtering can be done to: Concentrate the search on drug-like molecules (Lipinski's rule of 5, ...) or given physchem properties (log P, MW, ...) Remove promiscuous or dye compounds Remove compounds with toxic moieties (stability, reactivity, ...)

# Molecular Screening – Molecule Filtering – Promiscuous compounds

Promiscuous compounds are molecules found actives on multiple targets from different families.

### Possible reasons:

- unspecific chemical reactivity (acyl halides, Michael addition, alkylating agents...),
- redox reactions,
- instability (acetals, ...),
- interference with assay measurement (fluorescence, absorbance, chelators...),
- aggregators





# Molecular Screening – Molecule Filtering – Promiscuous compounds Methods to predict promiscuous molecules were developed by: 1. Compiling sets of known promiscuous and non-promiscuous compounds 2. Analysis of frequent scaffolds, fragments or molecular features in promiscuous molecules 3. Creation of rules/filters to identify promiscuous compounds 4. Test predictive ability on sets established in 1. Ex.: Lilly MedChem. Bruns, R. F.; et al. J. Med. Chem. 2012, 55, 9763-9772. PAINS. Baell, J. B.; et al. J. Med. Chem. 2010, 53, 2719–2740. - Pfizer LINT. Blake, J. F. et al. Med Chem 2005, 1, 649-655. - Abott ALARM NMR. Huth, J. R.; et al. J. Am. Chem. Soc. 2005, 127, 217–224. - Structural alert. Brenk, R.; et al. ChemMedChem 2008, 3, 435–444. Unil King 48















| <b>Reverse Screening and Target Prediction – General Objective</b>                                                                                                         |  |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|
| Methods:                                                                                                                                                                   |  |    |
| 1. Molecular similarity                                                                                                                                                    |  |    |
| Calculate molecular similarities between query molecule and ligands of known targets (e.g. SEA, SwissTargetPrediction, …)                                                  |  |    |
| 2. Protein structure-based                                                                                                                                                 |  |    |
| Systematically dock the query molecules to all possible protein targets with available 3D structure (e.g. TarFisDock, idTarget, …)                                         |  |    |
| 3. Data mining and machine learning methods                                                                                                                                |  |    |
| Use machine learning to associate molecular substructures and target names (e.g. A. Bender, et al., ChemMedChem, 2007, 861–873)                                            |  |    |
| 4. Analysis of bioactivity spectra                                                                                                                                         |  |    |
| Experimental readouts (e.g. expression profiles) of small molecules are used as molecular descriptor to compare molecules and suggest new drug applications (e.g. Mantra,) |  |    |
|                                                                                                                                                                            |  | 56 |







0-

S

0

30

H₃C

# **Reverse Screening and Target Prediction – SwissTargetPrediction**

### Use of 2D and 3D similarity

• Gfeller, D.; Michielin, O.; Zoete, V. Shaping the Interaction Landscape of Bioactive Molecules. Bioinformatics. 2013, 29, 3073–3079.

• Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: a Web Server for Target Prediction of Bioactive Small Molecules. Nucleic Acids Res. 2014, 42(Web Server issue), W32-8.

• Gfeller D., Zoete V. Protein homology reveals new targets for bioactive small molecules. Bioinformatics. 2015, 31, 2721-7.

• Daina A., Michielin O., Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47 (Web Server issue), W357–W364







# Reverse Screening and Target Prediction – SwissTargetPrediction.ch Prediction by homology Use of protein homology relationships to predict the targets of small molecules across different species: - exploiting target homology improves the predictions, especially for molecules experimentally tested in other species,

- mapping small molecule interactions among orthologs improves prediction accuracy,
- including paralogs does not.



| (Virtual) Screening and Reverse Screening                 |      |
|-----------------------------------------------------------|------|
|                                                           |      |
|                                                           |      |
| Contacts: vincent.zoete@unil.ch , antoine.daina@sib.swiss |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
|                                                           |      |
| Unil                                                      | - 65 |