

Lectures & Practices Agenda

Session	Lecture	Practice
	Prologue: molecular representation	
	Introduction to (computer-aided) drug design	
1	Origin of 3D structures	
	Molecular recognition	Use of UCSF ChimeraX to analyze protein-ligand complexes
0	Binding free energy estimation	
Z	Introduction to molecular docking	Ligand-protein docking with SwissDock
3	Introduction to molecular (virtual) screening	Ligand-based virtual screening with SwissSimilarity
4	Short introduction on target prediction of small molecules	Use of SwissTargetPrediction to perform reverse screening.
5	Introduction to ADME, pharmacokinetics, druglikeness	Estimate physicochemical, pharmacokinetic, druglike and related properties with SwissADME
6	Short introduction to bioisosterism	Use of SwissBioisostere to perform bioisosteric design
7	Introduction to quantum methods for drug design	Use of WebMO to perform quantum chemical calculations
		Unil 🎽

Quantum	Classical
More accurate (typically)	Less accurate (typically)
Equations more complicated	Equations less complicated
Computationally more expensive	Computationally less expensive
Can describe motions of electrons: necessary for UV/Vis spectra, electron transfer reactions, etc.	Cannot describe motions of electrons
Involves no empirical parameters ("ab initio" method) or only a few ("semi-empirical" method)	Involves many empirical parameters

Solving the Electronic Schrödinger Equation: Orbitals Orbital: a mathematical function that describes the wave-like behavior of an electron . and that can be used to calculate the probability of finding an electron in any specific region Orbital: one-electron function Electron: **spatial** coordinates (x,y,z) and **spin** coordinate ω (spin orbital) . Electrons are **fermions**, spin of $+\frac{1}{2}$ or $-\frac{1}{2}$. One orbital can contain a maximum of two electrons; the two electrons must have . opposing spins (Pauli exclusion principle) Orbitals can be calculated analytically for atoms with **one single electron only** (H, He⁺, Li²⁺,...) 34 © Sherrill

Property	Accuracy
Bond Lengths	± 0.02 Å
Bond Angles	± 2 [°]
Vibrational Frequencies	± 11%
Dipole Moments	± 0.3 D
Dissociation Energies	± 25-40 kcal/mol
Hartree-Fock strug diradicals, transiti	ggles with bond-breaking, ion metals, excited states

Method	Accuracy	Max. Nr. Atoms	
Semi-empirical	Low/Medium	~10000	
Hartree-Fock	Low	~1000	
DFT	Medium/High	~1000	
MP2	High	~500	
CISD	High	~50	
CCSD(T)	Very High	~50	
Quantum Monte Carlo	Very High	~50	
Multireference CI,CC	Ultra High	~20	
			R
Sherrill			47

king Success Rates and CPU Timings			
	C	CDUTING Initial	
	Success Rate [%]	CPU Time [min]	
AC			
Rand, 180°, 4 RIC	58.6	9.2	
Rand, 90°, 4 RIC	69.1	51	
Rand, 90°, 4 RIC, global	67.0	270	
Native, 90°, 4 RIC	78.2	50	
AutoDock Vina			
Rand, Exh. 8	56.8	0.9	
Rand, Exh. 16	58.2	2.0	
Rand, Exh. 100	57.9	11	
Native, Exh. 100	70.2	11	
Rand: randomized ligand co	onformation		
Native: bioactive ligand cor	nformation taken from com	plex structure	

QM/MM I	Docking Suco	cess Rates f	or Different	Targets
Method	Non-covalent Drugs	Zinc-binding Ligands	Heme-binding Ligands	CPU Time
AutoDock	47%	30%	34%	~ 7 h
AutoDock Vina	60%	38%	59%	~ o.6 h
GOLD	66%	54%	84%	~ o.oo6 h
Classical AC 1.0	79%	58%	38%	~ 3 h
QM/MM AC 1.0	75%	72%	75%	~ 8 h
-	On-the-fly QM/MM (balanced)	Docking performs w , covalently bound, j	ell for all types of cas polarized)	es

_	_	
1 Docking Re	sults	
	Success rate [%]	CPU time [min]
Covalent complexes		
Classical	71	30
QM/MM, PM7	70	120
Heme complexes		
Classical	16	25
QM/MM, PM7	86	280
lent docking: QM/MM per sensitive to structural det oprotein docking: large im lation times on one stand	forms as well as force-field ails and quality of experim provement due to electro ard CPU, calculations can	d method, but not better nental data; solvation not onic structure description be parallelized

Summary OM/MM Docking Advantages: QM/MM description can describe electronic structure of ligand/protein complex Potentially important for correctly describing ligand/protein interactions Application for example for metalloproteins, covalent binders, strongly polarized systems Disadvantages: Very sensitive to quality of structural data Computationally more demanding than classical docking

Mulliken Charges

- Most widely used quantum-mechanically derived atomic point charges
- Calculate gross orbital populations for each of the contributing atomic basis functions
- Off-diagonal elements distributed equally among contributing atomic centers
- Known problems:

1. large changes in charges with small changes in basis sets

- 2. overestimation of the covalent character of a bond (charges too small)
- In the exercise: valid approximation, because we use the same basis set and only consider relative trends in charges of similar molecules

Exercises with WebMO

- <u>https://www.swiss-webmo.ch/</u>
- Login: your UNIL e-mail address, all in **lower-case** letters
- Password: CADD-qm-2025
- Links available from pdf file

88

88

SiB